High School Reference Sheet

Formulas

Area (A) and Circumference (C)

Name	Shape	Formula
Rectangle	$w \square$	$A=l w$
Parallelogram		$A=b h$
Triangle		$A=\frac{1}{2} b h$
Trapezoid		$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Circle		$\begin{aligned} & A=\pi r^{2} \\ & C=2 \pi r \\ & C=\pi d \end{aligned}$

Formulas for Right Triangles

Shape	Formula
	Pythagorean Theorem
\boldsymbol{c}	$a^{2}+b^{2}=c^{2}$
\boldsymbol{b}	Trigonometric Ratios
$\sin \theta=\frac{a}{c} \cos \theta=\frac{b}{c} \tan \theta=\frac{a}{b}$	

Special Right Triangles

$30^{\circ}-60^{\circ}-90^{\circ}$	$45^{\circ}-45^{\circ}-90^{\circ}$

Volume (V) and Surface Area (SA)

Name	Shape	Formula
Right Rectangular Prism		$\begin{gathered} V=l w h \\ S A=2 l w+2 h w+2 l h \end{gathered}$
General Prism		$V=B h$ SA = Sum of the areas of the faces
Right Circular Cylinder		$\begin{gathered} V=\pi r^{2} h \\ S A=2 \pi r^{2}+2 \pi r h \end{gathered}$
Right Circular Cone		$\begin{aligned} V & =\frac{1}{3} \pi r^{2} h \\ S A & =\pi r^{2}+\pi r \ell \end{aligned}$
Right Pyramid		$\begin{aligned} V & =\frac{1}{3} B h \\ S A & =B+\frac{1}{2} P \ell \end{aligned}$
Sphere	r	$\begin{aligned} & V=\frac{4}{3} \pi r^{3} \\ & S A=4 \pi r^{2} \end{aligned}$

Polygon Angle Formulas

Interior Angle Formulas

Sum of the Interior Angles of a polygon with

$$
n \text { sides }=180^{\circ}(n-2)
$$

Measure of an interior angle of an n-sided regular

$$
\text { polygon }=\frac{180^{\circ}(n-2)}{n}
$$

Formulas

Equations of a Line

Standard Form:
$A x+B y=C$
where A and B are not both zero
Slope-Intercept Form:
$y=m x+b$
where $m=$ slope and $b=y$-intercept
Point-Slope Form:
$y-y_{1}=m\left(x-x_{1}\right)$
where $m=$ slope and $\left(x_{1}, y_{1}\right)$ is a point on the line

$$
\begin{aligned}
& \text { Coordinate Geometry Formulas } \\
& \text { Let }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \text { be two coordinate pairs } \\
& \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { where } x_{2} \neq x_{1} \\
& \text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Arithmetic Sequence	Geometric Sequence	Geometric Series
$a_{n}=a_{1}+(n-1) d$	$a_{n}=a_{1} r^{n-1}$	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}$ where $r \neq 1$
Quadratic Formula	Distance Traveled	Arc Length
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	$d=r t$	$S=r \theta$ (where θ is in radians)
Simple Interest	$A=P\left(1+\frac{r}{n}\right)^{n t}$	Continuously Compounded Interest
$I=p r t$	$A=P e^{r t}$	

Conversions

Angle Measurements	Weights
1 Radian $=\frac{180}{\pi}$ Degrees	1 pound $=16$ ounces 1 pound $=0.454$ kilograms 1 ton $=2000$ pounds 1 Degree $=\frac{\pi}{180}$ Radians Distances
1 mile $=5280$ feet	Volumes $=2.2$ pounds
1 mile $=1760$ yards	1 cup $=8$ fluid ounces
1 mile $=1.609$ kilometers	1 gallon $=4$ quarts
1 pint $=2$ cups	
1 kilometer $=0.62$ mile	1 gallon $=3.785$ liters
1 meter $=39.37$ inches	1 quart $=2$ pints
1 inch $=2.54$ centimeters	1 liter $=0.264$ gallons

