

High School Reference Sheet

Formulas

• •		• •		•
Name	Shape	Formula	Name	Sha
Rectangle	w []	A = lw	Right Rectangular Prism	
Parallelogram	b h	A = bh	General Prism	
Triangle	h	$A = \frac{1}{2}bh$		B
Trapezoid		$A = \frac{1}{2} \left(b_1 + b_2 \right) h$	Right Circular Cylinder	
Circle	a r	$A = \pi r^{2}$ $C = 2\pi r$ $C = \pi d$	Right Circular Cone	
Formula	as for Right Trian	gles	Right	

Shape	Formula	
c a a b	Pythagorean Theorem	
	$a^2 + b^2 = c^2$	
	Trigonometric Ratios	
	$\sin\theta = \frac{a}{c}\cos\theta = \frac{b}{c}\tan\theta = \frac{a}{b}$	

Area (A) and Circumference (C)

Special Right Triangles

30°-60°-90°	45°-45°-90°	
2x 60°	x \sqrt{2} 45°	
30°	45°	
x √3	x	

Name	Shape	Formula
Right Rectangular Prism	h	V = lwh $SA = 2lw + 2hw + 2lh$
General Prism	h B B	V=Bh SA = Sum of the areas of the faces
Right Circular Cylinder	h	$V = \pi r^2 h$ $SA = 2\pi r^2 + 2\pi r h$
Right Circular Cone	h e n r	$V = \frac{1}{3}\pi r^2 h$ $SA = \pi r^2 + \pi r\ell$
Right Pyramid	h	$V = \frac{1}{3}Bh$ $SA = B + \frac{1}{2}P\ell$
Sphere		$V = \frac{4}{3}\pi r^3$

Volume (V) and Surface Area (SA)

Polygon Angle Formulas

 $SA = 4\pi r^2$

Interior Angle Formulas Sum of the Interior Angles of a polygon with $n \text{ sides} = 180^{\circ} (n-2)$

Measure of an interior angle of an *n*-sided regular polygon = $\frac{180^{\circ} (n-2)}{2}$

Formulas

Equations of a LineStandard Form:
Ax + By = C
where A and B are not both zeroSlope-Intercept Form:
y = mx + b
where m = slope and b = y-interceptPoint-Slope Form:
 $y - y_1 = m(x - x_1)$
where m = slope and (x_1, y_1) is a point on the
line

Coordinate Geometry Formulas
Let
$$(x_1, y_1)$$
 and (x_2, y_2) be two coordinate pairs
slope = $\frac{y_2 - y_1}{x_2 - x_1}$ where $x_2 \neq x_1$
midpoint = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Arithmetic Sequence	Geometric Sequence	Geometric Series
$a_n = a_1 + (n-1) d$	$a_n = a_1 r^{n-1}$	$S_n = \frac{a_1 - a_1 r^n}{1 - r} $ where $r \neq 1$
Quadratic Formula	Distance Traveled	Arc Length
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	d = rt	$S = r\theta$ (where θ is in radians)
Simple Interest	Compound Interest	Continuously Compounded Interest
I=prt	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = Pe^{rt}$

Conversions

Angle Measurements	Weights	
1 Radian = $\frac{180}{1000}$ Degrees	1 pound = 16 ounces	
π	1 pound = 0.454 kilograms 1 ton = 2000 pounds	
1 Degree = $\frac{\pi}{180}$ Radians	1 kilogram = 2.2 pounds	
Distances	Volumes	
1 mile = 5280 feet	1 cup = 8 fluid ounces	
1 mile = 1760 yards	1 gallon = 4 quarts	
1 mile = 1.609 kilometers	1 pint = 2 cups	
	1 gallon = 3.785 liters	
1 kilometer = 0.62 mile	1 quart = 2 pints	
1 meter = 39.37 inches	1 liter = 0.264 gallons	
1 inch = 2.54 centimeters	1 liter = 1000 cubic centimeters	